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Abstract Understanding molecular conformation is a first step in understanding the waxing
(or formation of crystals) of petroleum fuels. In this work, we study the molecular confor-
mation of typical fuel oils modeled as pure n-alkanes. A multi-scale global optimization
methodology based on terrain methods and funneling algorithms is used to find minimum
energy molecular conformations of united atom n-alkane models for diesel, home heating,
and residual fuel oils. The terrain method is used to gather average gradient and average
Hessian matrix information at the small length scale while funneling is used to generate
conformational changes at the large length scale that drive iterates to a global minimum
on the potential energy surface. In addition, the funneling method uses a mixture of ave-
rage and point-wise derivative information to produce a monotonically decreasing sequence
of objective function values and to avoid getting trapped at local minima on the potential
energy surface. Computational results clearly show that the calculated united atom molecu-
lar conformations are comprised of zigzag structure with considerable wrapping at the ends
of the molecule and that planar zigzag conformations usually correspond to saddle points.
Furthermore, the numerical results clearly demonstrate that our terrain/funneling approach
is robust and fast.

Keywords Multi-scale global optimization · Terrain methods · Funneling methods ·
n-alkane molecular conformation · Fuel oils

1 Introduction

Waxing of petroleum or hydrocarbon fuels such as home heating and diesel fuels is a nag-
ging and costly problem in the petroleum industry. Billions of dollars are spent annually on
additives to these fuels to prevent waxing or crystal formation and on production, operatio-
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nal, and transportation difficulties that arise due to wax formation. This problem is further
exacerbated by the fact that there are a large number of phase transitions that, in turn, can
lead to a variety of crystal structures. The early literature on the structure of n-alkanes (see,
for example [1]) describes the molecular conformation of n-alkanes up to about C50 as a
zigzag structure with planar chains of methylene (or CH2) units terminated by methyl groups
(CH3). The orientation between the methyl end (or side) groups and the planar chain is either
perpendicular or tilted. Crystal lattice structures are determined by the energy associated
with both the horizontal and vertical arrangement of these zigzag molecules. However, more
recent studies using molecular dynamics [2] show that even single crystal structures of large
n-alkanes are not planar zigzag structures but show considerable wrapping at the ends of the
molecule.

In this paper, we study the molecular conformation of pure n-alkanes from the perspective
of global optimization. The primary motivation for this computational study is that of a first
step in quantifying the interplay between molecular conformation and crystal structure in
n-alkane mixtures. The long-term goal is to obtain a transition state theory description of
waxing dynamics with and without additives. This paper is organized in the following way. We
first provide a mathematical statement of the molecular conformation problem for n-alkanes.
Next we give a brief overview of the global optimization literature and then describe the
terrain and funneling methods used in this work. Following this, we present a multi-scale
global optimization methodology based on terrain and funneling methods. Next, numerical
results for the molecular conformation of typical fuels (diesel, home heating, and residual
fuels) are presented. We end our paper with some conclusions with regard to the numerical
performance of the proposed multi-scale global optimization method and its suitability for
solving problems in molecular conformation. However, we remark that the reader should keep
in mind that we offer no rigorous proof of convergence of the terrain/funneling approach to
a global optimum.

2 Problem statement

In this section, we describe the global optimization problem for the molecular conformation
of n-alkanes.

2.1 Objective function

In this work, we use a united atom potential energy function as the objective function, which
simply means that we assume that any n-alkane molecule is comprised of a string of methyl
(CH3) and methylene (CH2) groups. Thus the methylene and methyl groups form the basic
units of molecular conformation. Each of these united atoms in a molecule has Cartesian
coordinates and the corresponding potential energy function of this n-alkane molecule takes
the general form of a sum of bond energy, angle energy, torsion energy, and non-bonded (or
van der Waals) energy contributions given by

E = Eb + Ea + Et + EvdW (1)

2.1.1 Bond energy

The bond energy, Eb, is a harmonic (or quadratic) function given by

Eb = kb
(
r − req

)2 (2)
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where r denotes Euclidean distance, kb = 350 kcal/mol A2 and req = 1.53 A, and where the
symbol A is Angstroms (10−10 m).

2.1.2 Angle energy

The angle energy, Ea , formed by any three adjacent united atoms is

Ea = Kθ

(
θ − θeq

)2 (3)

where θ is an angle, kθ = 60 kcal/mol rad2 and θeq = 1.91 radians (or 109.5 degrees).

2.1.3 Torsion energy

The torsion energy, Et , between any four united atoms is

Et = 0.5 {kt1[1 − cos φ] + kt2[1 − cos(2φ)] + kt3[1 − cos(3φ)]} (4)

where kt1 = 1.62 kcal/mol, kt2 = −0.867 kcal/mol, and kt3 = 3.24 kcal/mol.

2.1.4 Non-Bonded or van der Waals Energy

Non-bonded energy, EvdW , between united atoms separated by more than three bonds is
modeled using the Lennard-Jones 6–12 potential function, which is given by

EvdW = 4ε

[(σ

r

)12 −
(σ

r

)6
]

(5)

where ε = 0.112 kcal/mol and σ = 4.01 A for either CH2 or CH3 groups.
All parameters in the foregoing energy expressions used in this work apply to both methyl

and methylene groups and were taken from [3], where it is shown that a united atom approxi-
mation of n-alkane molecules using methyl and methylene groups provides a good match
with experimental spin lattice relaxation time and nuclear Overhauser enhancement data.

2.2 Unknown variables

The unknown variables are the Cartesian or (x, y, z) coordinates of the united atoms in the
molecule and are related to r, θ and φ through the following formulae. The distance between
any pair of united atoms, say i and j , is given by

r = [
(xi − x j )

2 + (yi − y j )
2 + (zi − z j )

2]1/2
(6)

The angle formed by any three adjacent united atoms, i, j and k, is

θ = cos−1

{
[vi − v j ]T [vk − v j ]
||vi − v j ||.||vk − v j ||

}

(7)

where vi = (xi , yi , zi ) are the Cartesian coordinates of the ith united atom. Finally, the
torsion angle, φ, between any four adjacent united atoms is

φ = cos−1
{

uT w

||u||.||w||
}

(8)

where u = [vi − v j ] × [vk − v j ] and w = [vl − vk] × [v j − vk].
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2.3 Constraints

In any molecular conformation problem, it is helpful to fix the coordinate frame to avoid
translation and rotational singularities. This can be accomplished using the following linear
constraints

x1 = y1 = z1 = 0; y2 = z2 = 0 and z3 = 0 (9)

Equation 9 simply states that united atom 1 is fixed at the origin, united atom 2 lies along
the x-axis, and united atom 3 lies in the x − y plane. All other united atoms are free to lie in
R3. While it is also possible to further constrain the Cartesian coordinates of the united atoms
so they lie in the positive orthant by using the additional conditions that xi , yi , zi ≥ 0, for
all atoms, these conditions do not change the results because all symmetries give symmetric
portions of the objective function landscape and thus all optimization calculations are the
same.

Remarks It is important to note that the torsion and van der Waals energy terms have a
tendency to create many minima, saddle points and singular points (or roughness) on the
potential energy surface at the small length scale. However, at the large length scale, the
objective function is typically funnel shaped. It is this disparity in geometry at the small and
large length scales that is the primary reason that multi-scale global optimization methods
are particularly useful in solving molecular conformation problems. We also note that the
linear constraints given by Eq. 9 can be eliminated and the optimization problem re-cast in
the general form of finding the global minimum of the potential energy function subject to
simple bounds on Cartesian coordinates.

3 Optimization methods

There are many deterministic and/or stochastic methods that can be used to solve molecu-
lar conformation problems. These methods can be characterized as either general-purpose
methods or algorithms that are specifically designed for the molecular conformation pro-
blems. General purpose deterministic methods include the tunneling method of Levy and
Montalvo [3], the TRUST algorithm of Bahren and Protopopescu [4], and the αBB method
of Maranas and Floudas [5]. Floudas and co-workers have applied the αBB method to a
number of molecular conformation problems [6–10]. There are also homotopy-continuation
algorithms (e.g., Sun and Seider [11]), the diffusion equation method of Piela et al. [12], the
interval methods of Hansen [13] and Lin and Stadtherr [14], and terrain methods [15–17] and
funneling methods [18] of Lucia and co-workers. General purpose stochastic methods like
simulated annealing [19,20], genetic algorithms [21,22], as well as the stochastic differential
equations of Aluffi-Pentini et al. [23] and the stochastic approach of Bilbro [24] can also be
used to solve molecular conformation problems. Specialized techniques such as chain of
states methods (Sevick et al. [25]), build-up procedures [26–28], the threading method [29],
and the constrained simplex method [30] also find application in solving molecular confor-
mation problems—as do the path following algorithm of Cerjan and Miller [31], Baker’s
modified rational function approach [32] for finding saddle points and the nudged elastic
band method of Henkelman et al. [33]. In addition, specialized genetic algorithms have been
developed for Lennard-Jones [34] and other types of atomic clusters [35]—as have the basin
hopping methods of Wales and co-workers [36,37] and the double ended trajectory method
of Matro et al. [38]. Finally there are methods that attempt to combine the best of stochastic
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and deterministic methodologies such as the method of Gregurick et al. [39], which uses both
a conjugate gradient method and a genetic algorithm and is quite similar to basin hopping.
In this paper, we use terrain and funneling methods for multi-scale global optimization.

3.1 A terrain method for optimization at the small length scale

Terrain methods have been described in detail elsewhere in the literature [15–17] and are
briefly summarized here for the purpose of continuity. Terrain methods are used to locate sets
of stationary and singular points of a general C3 objective function, say f = f (z), subject to
bounds on variables, c(z), where z are the optimization variables. They do this by following
valleys and moving up and down the landscapes of gT g and f , where g = g(z) is the gradient
of f . The method used for downhill calculations, either initially or when moving downhill
from a saddle point to a minimum, is a standard Newton-based trust region method. Uphill
calculations, on the other hand, follow the Newton vector field along the valley. The terrain
method compensates for any drift from a valley, V , by intermittently solving a sequence of
general nonlinearly, constrained optimization problems

V = {min gT hT hg such that gT g = L , for all L ε �} (10)

where h = h(z) denotes the Hessian matrix of f , L is any given value (or level) of the
least-squares objective function, and � is some collection of contours. The nonlinear pro-
gramming problem in Eq. 10 defines what are called uphill corrector steps. These corrector
steps serve the purpose of forcing iterates back to the valley and are solved using a successive
quadratic programming (SQP) method. At any stationary point, eigenvalues and eigenvectors
are calculated in order to determine the character of that stationary point and whether the next
direction should be uphill or downhill. In particular, uphill movement from any minimum is
always initiated in the eigen-direction associated with the smallest positive eigenvalue while
the eigen-direction associated with the largest negative eigenvalue is used to move downhill
from any saddle point. Our terrain methodology also keeps track of where it has been on the
objective function landscape and, in this way, avoids re-calculating previously determined
stationary points. Finally, termination occurs when the algorithm encounters a pair of bounds
on one or more of the optimization variables. Thus in summary, terrain methods require

(1) Reliable downhill equation solving.
(2) Reliable and efficient computation of singular points.
(3) Efficient uphill movement comprised of predictor-corrector calculations.
(4) Reliable and efficient eigenvalue-eigenvector computations.
(5) Effective bookkeeping.
(6) A termination criterion to decide when the computations have finished.

In this or any other multi-scale application, the terrain methodology is used to find sets
of stationary and singular points and to determine average gradient and average curvature
(or Hessian matrix) information along a given terrain path. Average gradient and curvature
information is calculated from the mean value theorem using the following equations.

〈g〉 = (1/α)

∫
g[z(α)]dα (11)

〈h〉 = (1/α)

∫
h[z(α)]dα (12)
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where α is some relevant length of the smooth terrain path connecting any set of stationary
and singular points. It is important for the reader to understand that it is the set of stationary
and singular points as well as average gradient and Hessian matrix information that are
communicated from the small length scale to the large length scale.

3.2 A funneling method for optimization at the large length scale

Funneling methods are used to build approximations to the large-scale geometry of f using
the funnel function given by

F(z) = F0 − �e−q(z) (13)

where q(z) = 1/2zT Az + bT z+c, and where � > 0, F0 and c are scalar parameters, b is
an n-dimensional vector, and A is an n × n symmetric matrix. We note that the functional
form of Eq. 13 is non-convex, has a unique global minimum when A is positive definite, and
contains certain inherent self-scaling characteristics.

To build iterative global funnel approximations of the objective function we match func-
tion, gradient, and second derivative information of the true objective function, f, g and h,
with the function, gradient, and Hessian matrix information, F, G and H respectively, of the
funnel function at various points, where G = G(z) and H = H(z) are given by

G(z) = �e−q(z) [Az + b] (14)

H(z) = �e−q(z)[A − (Az + b)(Az + b)T ] (15)

Note that if f (z) is used in place of F(z) in Eq. 13, then

γ (z) = F0 − f (z) = �e−q(z) (16)

where γ > 0 is a positive scaling factor that depends on a single numerical measurement,
f (z), and the scalar parameter, F0. Moreover, replacing G(z) with g(z) and H(z) with h(z)
in Eqs. 14 and 15 respectively give the equations

[Az + b] = g(z)

γ
(17)

A = γ h + ggT

γ 2 (18)

Equations 16, 17, and 18 provide a means of estimating A and b from values of f (z), g(z),
and h(z) using interpolation formula at two or more iterates.

3.2.1 Interpolating formulae

Let zk be any value of the unknown optimization variables with corresponding objective
function, gradient and Hessian matrix values fk, gk and hk respectively. Also let zk+1 be
some other arbitrary but not necessarily nearby or successive iterate with corresponding
function, gradient and Hessian matrix values fk+1, gk+1 and hk+1. Writing Eq. 16 for zk and
zk+1 and then subtracting the latter from the former, eliminates F0 and gives

γk+1 − γk = fk − fk+1 (19)
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Repeating the same algebra using Eq. 18 yields

γ 2
k [γk+1hk+1 + gk+1gT

k+1] − γ 2
k+1[γkhk + gk gT

k ] = 0 (20)

Equations 19 and 20 form a set of [1+n(n +1)/2] nonlinear equations in the two unknowns,
γk and γk+1, when the symmetry of the associated matrices is taken into account. This
together with Eq. 11 gives a total of [1 + n(n + 1)/2] nonlinear equations. For n = 1, there
are two equations and two unknowns. When n > 1, there are more equations than unknown
variables. However, irrespective of this, two equations for which γk and γk+1 > 0 can be
determined using the Routh criterion.

3.2.2 Estimating funnel parameters

Calculated values of γk and γk+1 can be used to determine the matrix A from Eq. 18—using
gradient and Hessian matrix information either at zk or zk+1. Following this, the parameter
b can be computed by simply rearranging Eq. 17 to give

b = g(z)

γ
− Az (21)

while F0 can be calculated from F0 = f (z) + γ . Like A, the values of b and F0 can be
determined using function and gradient values at either zk or zk+1.

3.2.3 Finding the funnel minimum

It is straightforward to estimate the unique global minimizer of the funnel approximation,
say y, by simply solving

Ay = −b (22)

Note that Eq. 18 shows that the matrix A is generated from a rank-one, positive semi-definite
correction to h(z), that the sign definiteness of A can be controlled by the parameter γ , and
that γ plays the role of a self-scaling factor.

3.2.4 Communication between length scales

One of the keys to success in any multi-scale global optimization methodology is the com-
munication between length scales. In the terrain/funneling approach, small-scale calculations
communicate average gradient and average Hessian matrix information at two distinct points
to the large length scale. The large length scale optimizations, on the other hand, commu-
nicate an estimate of the values of the optimization variables at a converged minimum of
the funnel approximation on the true objective function surface to the small length scale and
identify the next region on the objective function surface on which small-scale optimizations
should be conducted.

4 A multi-scale global optimization method

The details of a multi-scale global optimization methodology based on the terrain and fun-
neling methods are as follows.
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1. Locate two distinct stationary points on the objective function surface.
2. Perform two sets of small-scale optimization calculations using the terrain methodology

starting from these two stationary points on the objective function surface. Calculate
average gradient and average Hessian information along the resulting terrain paths. Thus
at the kth funnel iteration the following information is available—zk, fk, gk and hk and
zk+1, fk+1, gk+1 and hk+1 such that fk+1 < fk .

3. Conduct iterative large-scale optimization calculations with the funneling methodology
initialized using zk, fk, gk and hk and zk+1, fk+1, gk+1 and hk+1 such that fk+1 < fk to
find a funnel minimum that also corresponds to a stationary point on the true objective
function surface. To do this,
(a) Solve Eqs. 19 and 20 for γk and γk+1.
(b) Using γk+1, calculate A and b from Eqs. 18 and 21 respectively.
(c) Determine an estimate of funnel minimum, y, from Eq. 22.
(d) Evaluate f (y), g(y) and h(y).
(e) Test f (y) against fk+1. If f (y) < fk+1, then go to step 3 f for the next funnel

iteration. Else set γk+1 = γk+1/2 and return to step 3b.
(f) Set zk+1 = y, fk+1 = f (y), gk+1 = g(y), and hk+1 = h(y).
(g) If ||g(y)|| < ε, set y∗ = y, and go to step 4; else go to step 3a.

4. Conduct a new set of small-scale terrain calculations using the funnel minimum from
step 3. Calculate average gradient and average Hessian information along the resulting
terrain path such that new values of zk+1, fk+1, gk+1 and hk+1 satisfy the condition
fk+1 < fk .

5. Repeat step 3 using the new small-scale information and zk, fk, gk and hk from step 2.
6. Repeat steps 3 and 4 until there is no further decrease in the objective function.

We actually use the funneling method to locate the initial two stationary points on the
objective function surface in step 1 of the algorithm. Step 2 of the algorithm uses the ter-
rain methodology to calculate average gradient and average Hessian matrix information in
the neighborhood of these initial stationary points. The most effective way to determine
γk+1in step 3a is to rearrange Eq. 19 for γk+1in terms of γk and then substitute the resulting
expression into Eq. 20. This gives a cubic polynomial equation in γk and shows that there
are three possible values of γk and thus three possible sets of scaling factors (γk, γk+1).
Using an equation solver like Newton’s method, it is easy to find one solution for γk . The
other two values of γk can be determined by deflation of the cubic equation to a quadratic
equation and by using the quadratic formula. The correct value of γk is the smallest real
valued γk > 0 such that γk+1 > γk , where γk+1= fk – fk+1 + γk . Step 3b is straightfor-
ward and step 3c requires the solution of a system of linear equations. Step 3d evaluates
the actual function, gradient, and Hessian matrix at the funnel iterate y. Step 3e is used to
ensure monotonically decreasing objective function values by halving γk+1 until f (y) <

fk+1 while step 3f replaces the information associated with zk+1 with that for the funnel
minimum y∗. Finally, step 3g checks the norm of the gradient of the objective function
and terminates the funnel iterations once that norm of the gradient falls below the speci-
fied tolerance. Note that any point, y∗, that satisfies the convergence condition in step 3g is
simultaneously a stationary point of f (z) and a minimizer of the funnel function F(z). It
is important for the reader to recognize that the funneling method uses average derivative
information on iteration 1 and a mixture of average and point-wise derivative information
on all subsequent funnel iterations. Moreover, the purpose of using average gradient and
Hessian matrix information is to prevent the funneling method from getting trapped at a local
minimum.
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Fig. 1 Terrain/funneling calculations for n-C12H26

5 Computational results

In this section we present numerical results for the molecular conformation of pure n-C12H26,
n-C16H34, and n-C24H50, as model fluids for diesel, home heating and residual fuel oils. These
n-alkanes are modeled using a united atom approach and the multi-scale optimization method
described in the previous section is used to solve the associated global optimization problem.
The number of unknown variables in these optimization problems ranges from 30 to 66
Cartesian coordinates. All computations were performed in double precision arithmetic on
a Dell 670 High Precision Workstation using a Lahey-Fujitsu LF95 compiler. The tolerance
used in step 3g of the algorithm was ε= 10−8.

5.1 n-C12H26 as a model for diesel fuel

Diesel fuel, like any fuel oil, is actually comprised of a mixture of hydrocarbons of varying
carbon chain length — in this case C10 to C15. Thus we choose pure n-C12H26 as a represen-
tative model of diesel fuel. As a result, this first example problem is the smallest of the three
examples studied with 30 unknown variables. Figure 1 summarizes the results for n-C12H26

and clearly shows that the terrain/funneling approach converges to the exact same global
minimum molecular conformation from all starting points. The Cartesian coordinates for the
global minimum and corresponding potential energy are given in Table 1 at the end of this
section.

Our multi-scale optimization method starts by finding two distinct stationary points using
the funneling algorithm, as described in step 1 of the algorithm. To do this for the case
of n-C12H26 we chose two arbitrary starting points for which the potential energy was E1=
116545.30 kcal/mol and E2= 85761.12 kcal/mol respectively. Using the gradient and Hessian
matrix information at both starting points, funnel parameters and a first estimate of funnel
minimum were determined. We then replaced one of the starting points with this estimate of
the funnel minimum and repeated the funnel optimization calculations until a stationary point
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on the energy surface was located. The first stationary point located was a local minimum,
has a potential energy of E∗

1 = 5.63197 kcal/mol, and was computed in 45 iterations and 1.6 s
of computer time. In a similar way, using two other starting points with energy values of
E3 = 2.1877 × 106 kcal/mol and E4= 1824.31 kcal/mol, a second stationary point, a saddle
point, with an energy value of E∗

2 = 5.16511 kcal/mol was calculated in 17 funnel iterations
and 0.43 s of computer time. Note that E∗

2 < E∗
1 .

Average gradient and average Hessian matrix information was then calculated in the neigh-
borhood of each of these initial stationary points using the terrain methodology. This is step
2 of the multi-scale optimization algorithm. From the first stationary point, which corres-
ponded to an energy of E∗

1 = 5.63197 kcal/mol, average gradient and Hessian information
was accumulated along the terrain path using the path integrals given by Eqs. 11 and 12.
For the first set of small-scale optimization calculations, the terrain methodology used 8235
function and gradient evaluations and 871.47 s of computer time. In a similar way, average
gradient and Hessian matrix information was accumulated in the neighborhood of the second
stationary point, E∗

2 = 5.16511 kcal/mol. Here, the terrain methodology used 18293 function
and gradient evaluations and 2048 s of computer time.

To initialize iterative large-scale funnel calculations we picked two points — one from each
of the two sets of terrain calculations. Using the corresponding function, average gradient
and average Hessian information at these two points, we initiated funnel calculations and
located a third stationary point, a minimum with an energy value of E∗

3 = 2.68811 kcal/mol,
in 14 funnel iterations and 0.23 s of computer time. The gray curve in Fig. 1 gives the funnel
iteration history for this set of multi-scale global optimization calculations. Note that the
potential energy decreases monotonically with each funnel iteration and finally finds the
global minimum on the energy surface rather easily.

Note that E∗
3 < E∗

2 < E∗
1 as required by the methodology. Given the minimum, E∗

3 , the
multi-scale global optimization method performed another set of small-scale optimization
calculations. That is, a new set of small-scale terrain calculations was conducted in the
neighborhood of E∗

3 and average gradient and Hessian information in the neighborhood
of E∗

3 was accumulated. This information was then used in place of E∗
2 and its associated

average gradient and Hessian information, as described in step 5, and a second set of funneling
calculations was conducted. However, the second set of funnel calculations found the same
minimum on the energy surface at E∗

4 = 2.68811 kcal/mol. Since E∗
4 = E∗

3 , the multi-scale
optimization algorithm terminates with E∗

4 as the global minimum. Table 1 gives the Cartesian
coordinates for this global minimum. From these Cartesian coordinates, it is easily determined
that the conformation of the united atom model of n-C12H26 is zigzag with wrapped ends,
at which the bond angles are all at their equilibrium value of θ = 1.91 rad, the bond lengths
are almost all at their equilibrium values and it is the torsion and van der Waals energies
that dictate conformation. See also Fig. 1. Note that without the use of average gradient and
Hessian matrix information, the funnel method would be trapped at the local minimum E∗

1
or the saddle point E∗

2 .
To illustrate the robustness of the multi-scale methodology, small-scale terrain calculations

in the neighborhood of two other stationary points on the potential energy surface – E∗
5 =

43.0166 kcal/mol, which correspond to a saddle point on the energy surface with a planar (or
two-dimensional) zigzag structure and a second saddle point with an energy value of E∗

6 =
7.49362 kcal/mol—were performed and average gradient and average Hessian information
was gathered along these terrain paths. Using this information, the funneling algorithm again
calculated the same funnel minimum corresponding to a global minimum on the energy
surface at E∗

3 = 2.68811 kcal/mol in 14 funnel iterations and 0.24 s. The results of these
calculations are shown in Fig. 1 in black. It is important to note that despite the fact that
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Fig. 2 Terrain/funneling calculations for n-C16H34

we started the terrain/funneling calculations from a planar structure or saddle point with
energy E∗

5 = 43.0166 kcal/mol, which is very high when compared to the energy at the
global minimum, our multi-scale optimization approach easily found the global minimum in
a reliable and efficient manner. Finally, we mention that we have performed a large number of
similar multi-scale global optimization calculations using other starting points on the potential
energy surface and in all cases, our methodology finds the same low energy minimum of E∗

3
= 2.68811 kcal/mol and the same exact molecular conformation.

5.2 n-C16H34 as a model for home heating fuel

The model fluid for home heating fuel, which is generally a mixture of C10 to C20, is pure
hexadecane or n-C16H34. The corresponding number of unknown optimization variables for
a united atom model of hexadecane is 42.

Figure 2 shows funneling results for two separate sets of multi-scale global optimization
calculations for determining the molecular conformation of hexadecane. Note that both sets of
funnel iterations shown in Fig. 2 produce monotonically decreasing potential energy values.
Clearly both sets of terrain/funneling calculations, each initiated from different starting points
on the potential energy surface, easily find the same global minimum at E = 3.233 kcal/mol
with the same molecular conformation in 20 and 19 funnel iterations respectively.

To give the reader an understanding of how these calculations proceed, consider the
funnel iterations shown in black in Fig. 2. Small-scale terrain calculations starting from
points on the energy surface corresponding to E∗

1 = 62.4577 kcal/mol, which is a saddle
point on the energy surface having a flat planar zigzag structure and a local minimum with a
potential energy of E∗

2 = 3.63439 kcal/mol were performed and average gradient and average
Hessian information along the terrain paths was gathered. Note that E∗

2 < E∗
1 . The first set

of small-scale terrain calculations required 19415 function and gradient evaluations and
3908 s of computer time while the second set of small-scale terrain calculations used 19220
function and gradient evaluations and 3869 s of computer time. Funnel calculations were then
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initiated using the information from the small-scale terrain calculations whereby the funneling
algorithm located a stationary point corresponding to a global minimum on the energy surface
at E∗

3 = 3.233 kcal/mol in 20 funnel iterations and 0.25 s of computer time. The multi-scale
algorithm then performed small-scale terrain calculations in the neighborhood of E∗

3 in order
to gather average gradient and curvature information. Using E∗

3 and its average gradient
and Hessian matrix information (in place of E∗

2 and its average information) together with
E∗

1 and its average information, the funnel method computed the same minimum value
of the potential energy, E∗

4 = 3.233 kcal/mol. Since E∗
3 = E∗

4 the multi-scale algorithm
terminates with E∗

3 = E∗
4 = 3.233 kcal/mol as the global minimum. Numerical results for

the gray curve shown in Fig. 2 are very similar to those just described—as are numerous
other terrain/funneling calculations that have been conducted for hexadecane.

The Cartesian coordinates for the global minimum are given in Table 1. Here again, as
in the case of n-C12H26, the Cartesian coordinates given in Table 1, as well as the graphical
representation in Fig. 2, clearly show that the global minimum molecular conformation of
hexadecane is zigzag with considerable wrapping at the ends of the molecule. In fact, there is
more wrapping of the ends of the united atom molecule for hexadecane than for n-C12H26—
most likely due to the increase in carbon chain length. Also, all united atoms are at their
equilibrium bond angles of 1.91 rad, the bond lengths are very close to their equilibrium
values and torsion and van der Waals energies play a dominant role in determining molecular
conformation.

5.3 n-C24H50 as a model for residual fuel oils

Residual fuel oils vary significantly in carbon chain length from C20 to C70. Here we choose
pure n-C24H50 as a representative residual fuel oil and thus the number of unknown variables
is 66. Figure 3 shows results for two separate sets of multi-scale global optimization cal-
culations using terrain/funneling methods for pure n-C24H50. From this figure it is clearly
seen that both sets of multi-scale global optimization calculations easily find the exact same
molecular conformation with a global minimum at E = 3.28692 kcal/mol in 23 and 25
funnel iterations respectively.

Again we describe the numerical performance of the multi-scale global optimization algo-
rithm for the funnel iterations shown in black in Fig. 3. First, small-scale terrain calculations
from two different starting points on the potential energy surface were performed. The first
starting point was a saddle point on the energy surface with a planar zigzag structure and
a corresponding potential energy of E∗

1 = 101.34 kcal/mol. The second starting point was
also a saddle point and had a potential energy of E∗

2 = 11.44861 kcal/mol. These small-scale
terrain calculations were used to gather average gradient and average Hessian information
along the terrain paths in the neighborhoods of these stationary points. The first set of small-
scale optimization calculations required 1860 function and gradient evaluations and 945 s of
computer time while the second set of small-scale terrain calculations needed 6488 function
and gradient evaluations and 4349 s of computer time. Information from these small-scale
optimization calculations was then used to initialize iterative large-scale funnel calculations
and the funneling algorithm located a stationary point corresponding to a global minimum
on the energy surface at E∗

3 = 3.28692 kcal/mol in 24 funnel iterations and 0.5 s. Repeated
small-scale calculations around E∗

3 and a subsequent set of funnel iterations gave the same
minimum on termination. That is, the algorithm terminates with E∗

4 = E∗
3 = 3.28692 kcal/mol

as the global minimum of the potential energy for pure n-C24H50.
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Fig. 3 Terrain/funneling calculations for n-C24H50

Similar numerical behavior was observed for the funneling calculations shown in gray
in Fig. 3 and for other numerical experiments that have been performed for n-C24H50.The
Cartesian coordinates for the global minimum are given in Table 1.

From the Cartesian coordinates and Fig. 3 we can again observe that there is considerable
wrapping of the minimum molecular conformation for n-C24H50. In fact, it is easily seen
that the degree of wrapping at the ends of the united atom model of n-C24H50 is greater than
that for hexadecane, which in turn is greater than the wrapping for n-C12H26. Also all united
atoms are at their equilibrium bond angles of 1.91 radians in the global minimum molecular
conformation.

6 Conclusions

A multi-scale global optimization methodology that uses small-scale terrain and large-scale
funneling calculations was presented. This multi-scale optimization algorithm was used to
find molecular conformations for three representative fuel oils—diesel fuel, home heating
fuel, and residual fuel oil—modeled as pure n-alkanes in a united atom framework. Numerical
results clearly show that our multi-scale methodology is capable of reliably finding the
molecular conformation corresponding to the global minimum on the potential energy surface
with modest computer resources.

We close this paper with a brief indication of the direction of this research. As noted in the
introduction, we are interested in the waxing of fuel oils. For this, a collection of n-alkane
molecules and models of crystal lattice structures are required. Thus the next steps in this
research will consist of the development of a model of the potential energy of crystal lattices,
the determination of low energy crystal structures (or conformations), and a quantitative
description of the interplay between molecular conformation and crystal structure. We believe
that the molecular conformation of individual pure n-alkanes or n-alkane mixtures with or
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without additives must change as they pack into low energy crystal structures due to the fact
that there are additional intermolecular van der Waals forces.

7 Coda

Those interested in detailed copies of the computations are encouraged to contact the authors.
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under Grant No. ACS PRF # 44793-AC9.
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